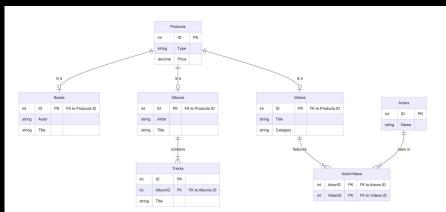


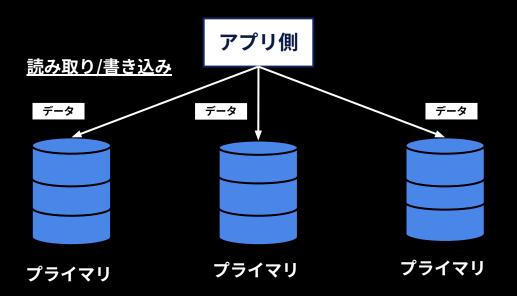
分散SQLデータベース「TiDB」の リアルな課題と運用ノウハウ

Koitabashi Yoshitaka Senior Solution Architect / PingCAP Japan

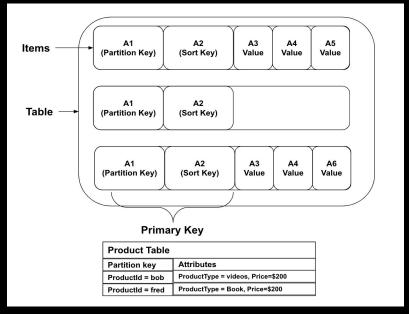
- on 分散型SQLデータベース
- [®] TiDBの裏側
- 🕫 実際の運用現場で直面する課題


の1 分散型SQLデータベース ≒ NewSQL

例: RDBMSアーキテクチャ / テーブル構造



例: 製品(Products)データベース

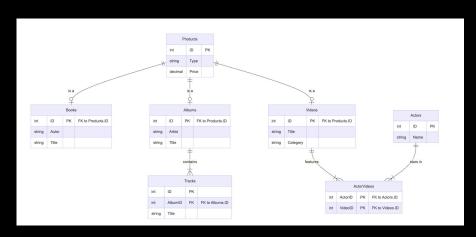


例: NoSQLアーキテクチャ / テーブル構造

例: KVSベースのテーブル設計

例: 分散型SQLデータベース ≒ NewSOL

プライマリ

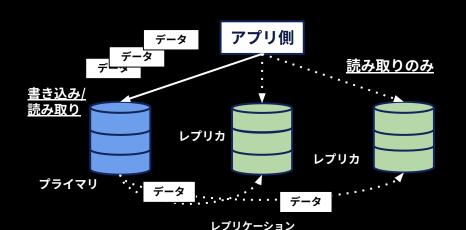

読み取り/書き込み コンピューティングノード ノードA ノードB ノードC ストレージノード

プライマリ

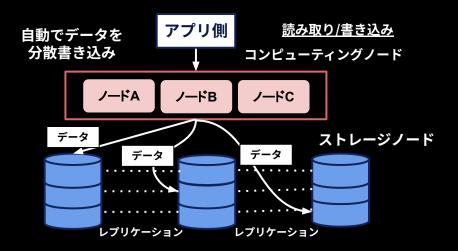
アプリ側

プライマリ

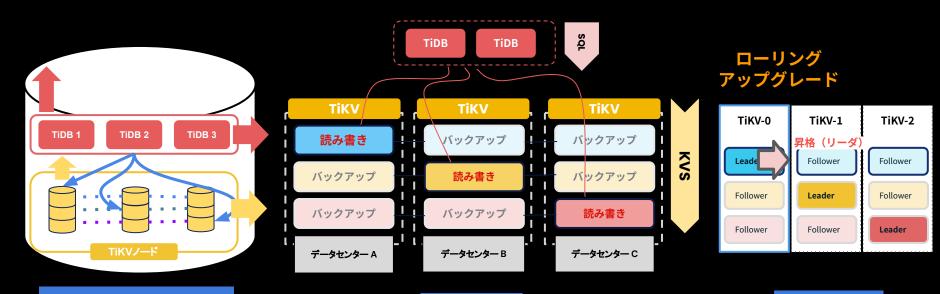
例: 製品(Products)データベース



RDBMSとNewSQL(TiDB)との違い


RDBMS

- ・書き込み負荷の集中に伴うボトルネック
- ・レプリカのスケール限界 / レプリカラグ

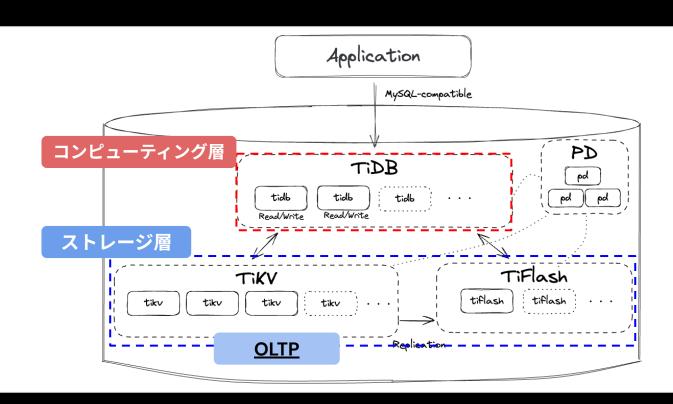

NewSQL (TiDB)

- ・大量の同時接続でも一定のレイテンシ
- ・オンラインで水平/垂直に拡張可能

なぜ分散型SQLデータベースが注目されているのか

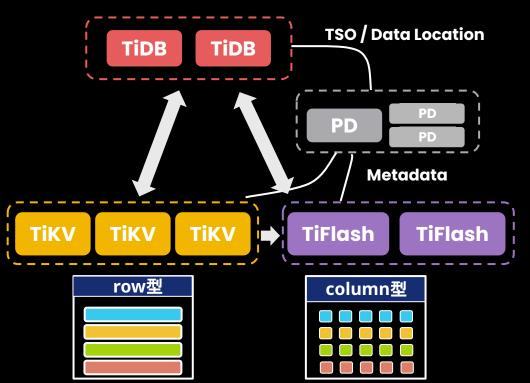
柔軟なスケーリング

ビジネスの成長に合わせて、 稼働するDBを止めずに拡張可能 **BCP**


インスタンス/DC 障害時も自動復旧 Resilient

アップグレードは 無停止実行が可能

02 TiDBの裏側



全体のアーキテクチャー

TiDB内部のコンポーネント

コンピューティング

TiDB

- ・ SQL解析を行う *MySQLプロトコルをKVに変換
- HTAPではTiKV(row型)かTiFlash(column型)判断

ストレージ

TiKV

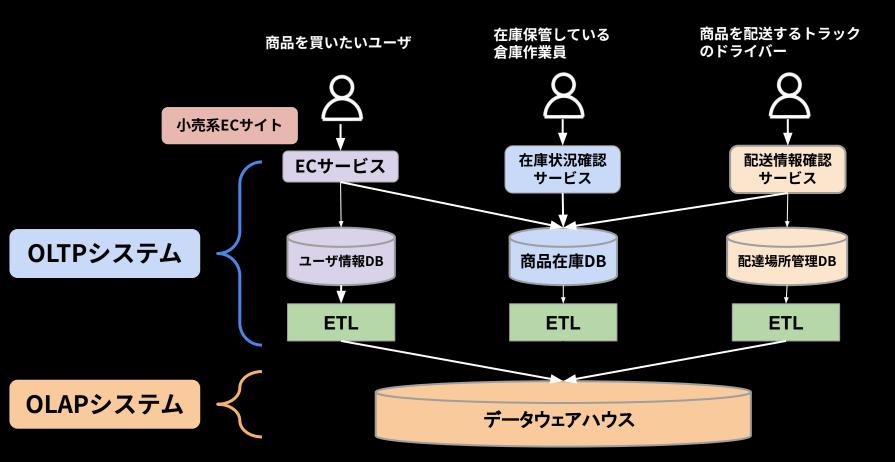
TiFlash

TiKV

- OLTP用途の分散Key-Value Store※RocksDB利用
- パーティショニングによるデータ分散管理
- Raftや2PCにより整合性担保

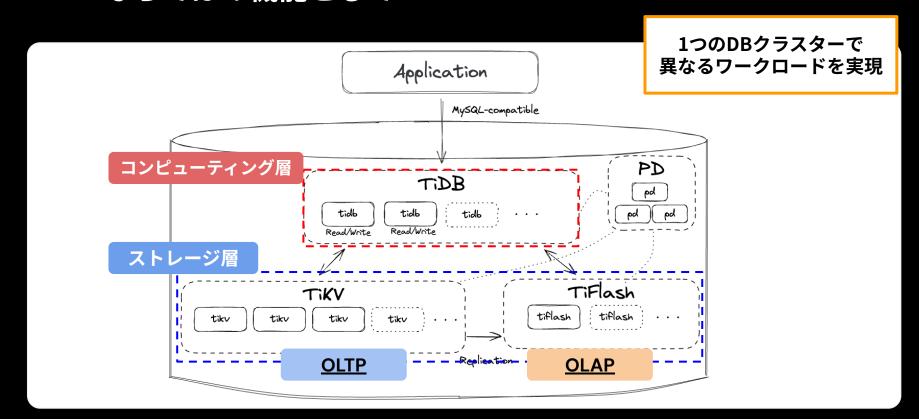
*optional

- HTAP利用時の追加コンポーネント
- OLAP用途のカラム型ストア


司令塔

РΓ

- データ配置場所の管理(Region管理)
- 分散トランザクションで利用するTSOを発行



よくあるOLTPワークロード / OLAPワークロード

TiDBならではの機能としてHTAP

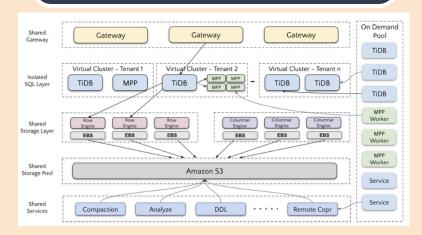
TiDBの利用パターン

パターン 1

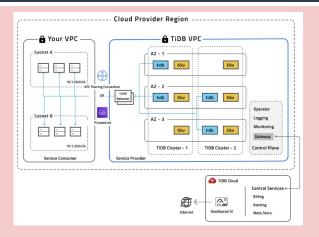
Instance

TIUP

TiDBのセットアップから運用まで ※ローカルでも使える



TiDB Cloudのラインナップ


Serverless

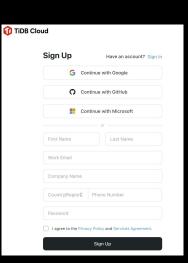
マルチテナント型

- シングルAZ or マルチAZ / Autoスケール
- BranchingやEdge Function用のDriver用意
- Vector Search※Betaもあり

Dedicated

専有型

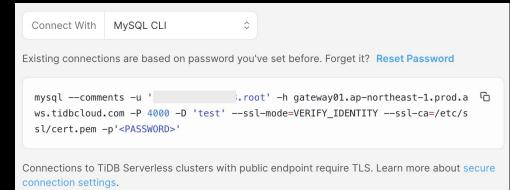
- マルチAZ / 各コンポーネントスケール(APIあり)
- MySQLからの移行ツールもフルで使える
- OSSライクに柔軟なチューニング可能



簡単に始められるTiDB Serverless

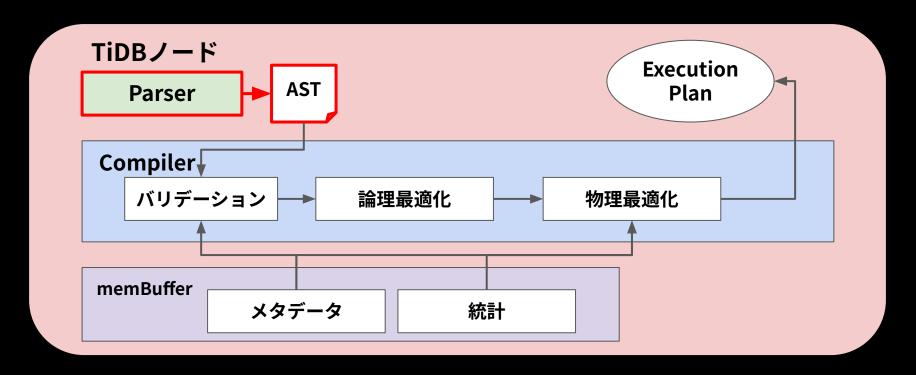
クレカ不要! \$0から利用可能

・1ヶ月間で行ベースデータ5GiB / 列ベースデータ5GiBを同時に保存可能・5,000万RUを消費可能


※無料クラスター: 1アカウント5つまで

MySQLクライアントからの 接続時の情報も自動生成

クラスタの起動10秒くらい

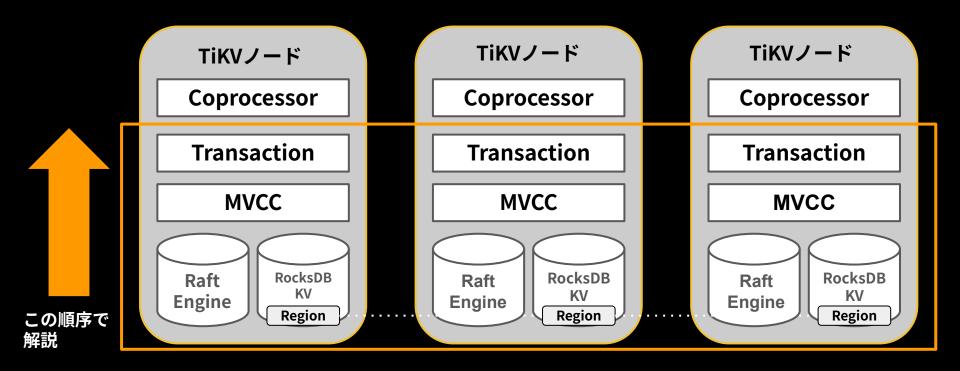

pingcap-webinar-20250424 Serverless • Available

分散DBの裏側

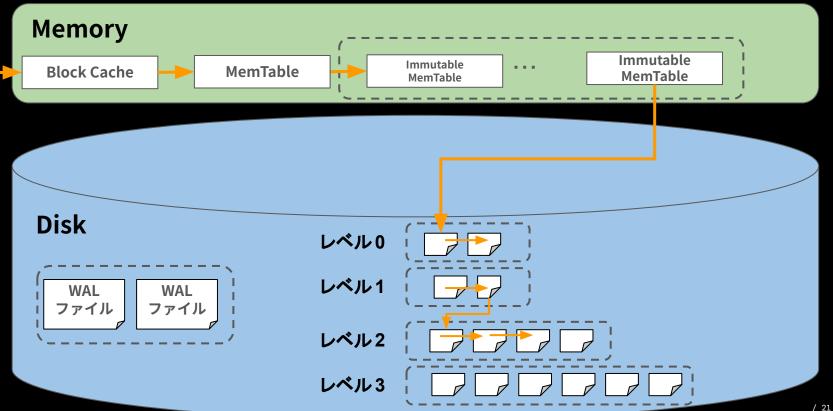
TiDBの役割: SQLの変換とトランザクション

TiDBにおけるテーブルからKey-Valueへの変換

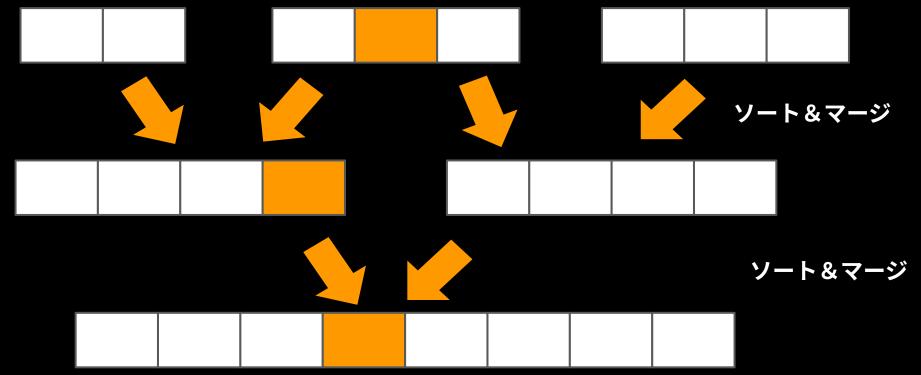
- 行データを <{table_id, primary key},{values*}> の形のKVに変換
- インデックスも <{index_columns*},rowid>の形のKVに変換


id	名前	誕生日	携帯電話	点数
r1	Tom	1982-09-28	1390811212	78
r2	Jack	1996-04-12	1801222187	91
r3	Frank	1982-09-28	1364571212	90
r4	Tony	1977-03-12	1391113134	65
r5	Jim	1992-07-19	1579915611	51
r6	Sam	1978-09-12	1713665011	97

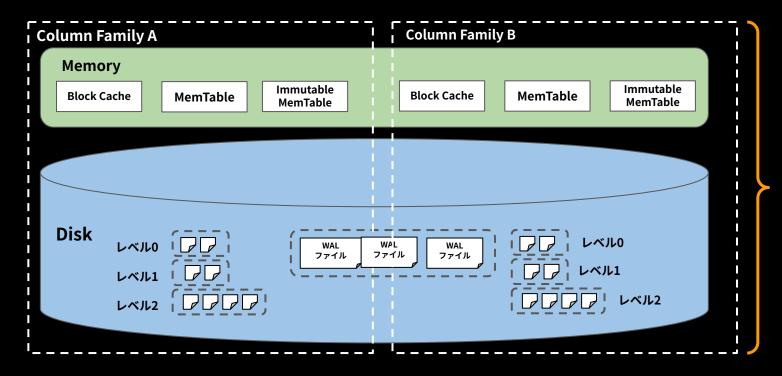
Key	Value
tid_r1	Tom, 1982-09-28, 1390811212, 78
tid_r2	Jack, 1996-04-12, 1801222187, 91
tid_r3	Frank, 1982-09-28, 1364571212, 90
tid_r4	Tony, 1977-03-12, 1391113134, 65
tid_r5	Jim, 1992-07-19, 1579915611, 51
tid_r6	Sam, 1978-09-12, 1713665011, 97



TiKVの役割: データの保存と一貫性



RocksDBの書き込み処理の特徴



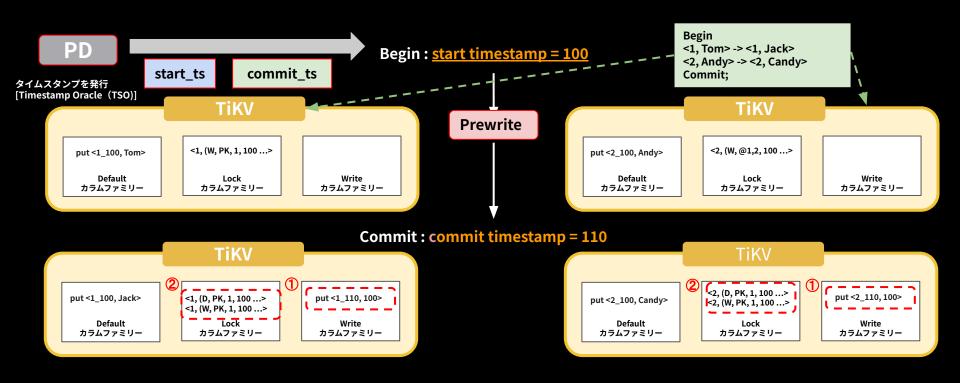
ログ構造化マージ(LSM)ツリーの動き

RocksDBにおけるCF(カラムファミリー)

Default CF

実際のデータ

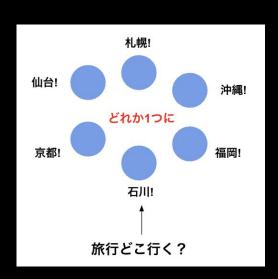
Lock CF


トランザクションの ロック情報

Write CF

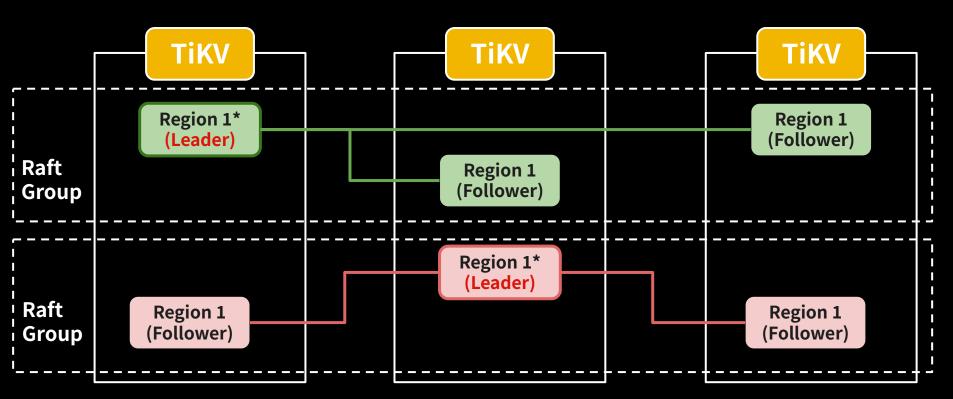
各キーの更新履歴と コミット情報

分散トランザクション / MVCC

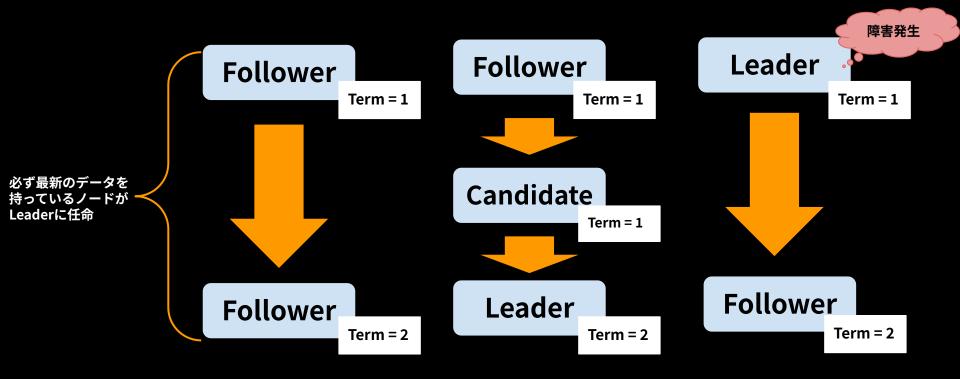


レプリカによる可用性: Raft

分散システム: Consensus(合意)形成は重要


- 異なるレプリカを作り出さないようにする
- リーダーの決定や分散トランザクションに利用

- 一貫性を保つ合意アルゴリズム
- Raft => <u>TiDBではこちらを採用</u>
- Paxos



Raftによるログレプリケーションの動き

Raftによる選挙の動作

o3 リアルな課題と運用ノウハウ

TiDBのテーブル構造

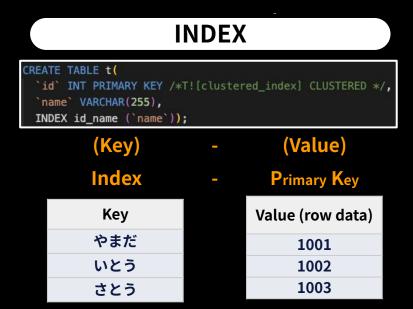
※実際のKeyにはTableの情報も含まれます

TABLE ※デフォルト: CLUSTERD

CREATE TABLE t (
 `id` INT PRIMARY KEY /*T![clustered_index] CLUSTERD*/,
 `name` VARCHAR(255));

(Key) - (Value)

Primary Key - row data

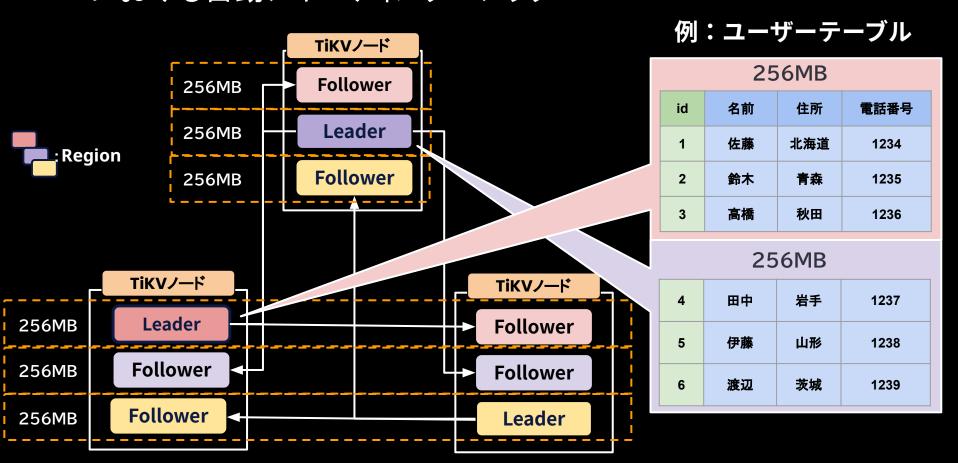

 Key (PK)
 Value (row data)

 1001
 やまだ

 1002
 いとう

 1003
 さとう

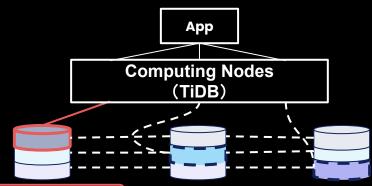
- ・1レコードを1つのKey-Valueとして保存
- Key:PK Value:その他のColumn


Key:Index / Value:PK

・Index Lookup => 2ホップでアクセス

※①Index KV → ②Table (Row Data) KVの順

TiDBにおける自動シャーディングロジック

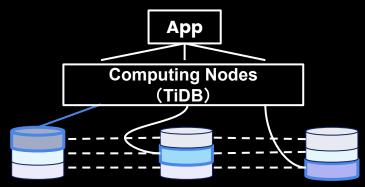


Writeの観点:PKを散らす

PKが連番

多数の近い値を主キーに挿入すると、 書き込みホットスポットを誘発

ex. Auto Incrementテーブルに大量INSERT

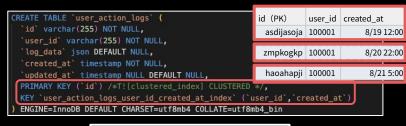

id (PK)	created at
1	4/1 12:00
2	4/1 12:01
3	4/1 12:02
4	4/1 12:03

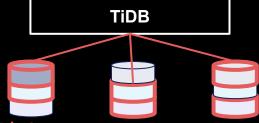
id (PK)	created at	id (PK
		10 (11)
9999999	4/4 2:00	• • •

created at

PKがランダム ※バラっきぁり

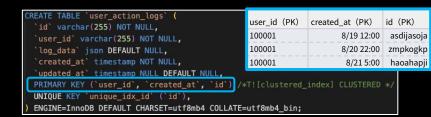
主キーにはバラつきのある値を利用
-> 負荷もバラけるためHotspot回避
※Auto RandomやUUIDなど

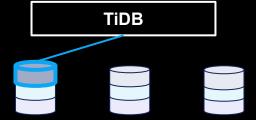

id (PK)	created at	id (PK)	created at
100100001	4/1 12:00	234100001	4/1 12:01
100100002		234100002	4/1 12:04
100100003	4/1 12:06	234100003	4/1 12:07


id (PK)	created at	
368400001	4/1 12:02	
368400002	4/1 12:05	

Readの観点:PKの工夫

サロゲートキー + Index




CPU負荷高め

- ・PKがサロゲートキー(id)のため、 取得したいデータが各TiKVノードに散らばっている
- ・Indexからのアクセスのため2ホップ

```
SELECT * FROM `user_action_logs`
WHERE `user_id` = ? AND `created_at` >= ?
ORDER BY `created_at` DESC, `id` DESC LIMIT ?
```

PK

取得したいデータを特定のTiKVノードに収めることができるので効率が良い

=> SLELECTの条件に即してPKを設計しておくことがポイント ※RDBMSと同じ

Readの観点:Covering Index ※PK除いた全カラムのIndex

テーブルのKV

Primary Key

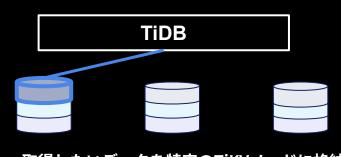
id	(PK)
	1
	2
	3
	4

- row data

user	department	created at
やまだ	AAA	4/1 12:00
いとう	AAA	4/1 22:00
さとう	BBB	4/2 5:00
いしだ	BBB	4/2 13:00

SELECT * FROM `user_action_logs` WHERE `user_id` = ? AND `created_at` >= ? ORDER BY `created_at` DESC, `id` DESC LIMIT ?

```
CREATE TABLE `user_action_logs` (
   `id` varchar(255) NOT NULL,
   `user_id` varchar(255) NOT NULL,
   `log_data` json DEFAULT NULL,
   `created_at` timestamp NOT NULL,
   `updated_at` timestamp NULL DEFAULT NULL,
   PRIMARY KEY (`id`) /*T![clustered_index] CLUSTERED */,
   INDEX idx covering(`user id`,`created at`,`updated at`,`log data`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin
```


IndexのKV → こっちだけを見る

Index

userdepartmentcreated atやまだAAA4/1 12:00いとうAAA4/1 22:00さとうBBB4/2 5:00いしだBBB4/2 13:00

Primary Key

id (PK)
1
2
3
4

取得したいデータを特定のTiKVノードに格納 ※ストレージが2倍になる (テーブルとIndexのKV)

①: 帯域(数百万QPS) やレイテンシに対する設定

例えば、ワークロードとしてRead heavyだった時 TiDBの性能を発揮するパラメータとは?

2024年、TiKVのCPU使用率が高くなると、 Write latencyが上がる課題があった

v8.0で<u>store-pool-io</u>パラメータのデフォルト値を変更: 0->1 => Raft I/O タスクを処理するスレッドの許容数

②: 更新ヘビーなワークロードが起こす問題

- TiKVはLSMTree(追記型)
- Write(update,delete)は追記型で保存
- => ある程度の頻度(compaction)で削除

履歴(MVCC)データが多くなる => 履歴データを含めた検索

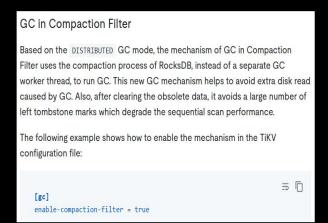
TiKV

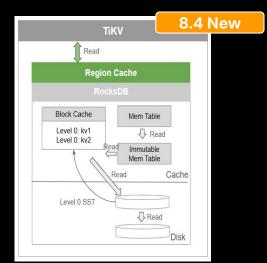
put <1_100, Jack>

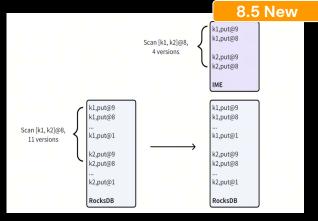
Default カラムファミリー <1, (D, PK, 1, 100 ...> <1, (W, PK, 1, 100 ...>

Lock カラムファミリー put <1 110, 100>

Write カラムファミリー •TiKV CPU使用率の増加


・レイテンシーの増加




TiDB側としての改善

①: GCで削除するの頻度を増やす (parameter :compaction-filter->false)

②: TiKVの中にキャッシュを作成 最新のデータのみ読む機能 (in-memory cache) ③: TiKV内にMVCC用のインメモリエンジンを搭載 最新のMVCCバージョンを メモリにキャッシュ (in-memory-engine)

③: 多テーブルが引き起こす問題

B2B2C/つぎ足すシステムはテーブルが多くなる傾向がある

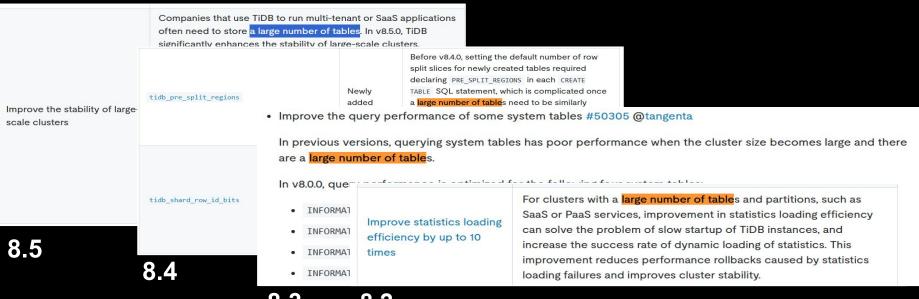
顧客2

顧客3

顧客4

. . .

100万テーブル?


40テーブル 40テーブル 40テーブル 40テーブル

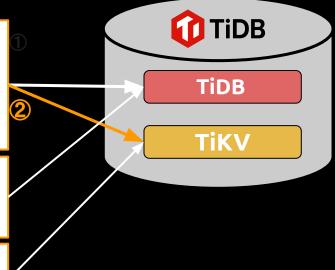
統計情報のロードに時間がかかる (起動が遅い、クエリが非効率に) Information Schemaのレスポンス低下 (show~のせいでmigrationが遅い。)

TiDB側としての改善

1年以上かけて改善し続けています (統計情報のロード性能など)

8.3

④: 用途に応じた移行方法の複雑化


様々な移行方法例

MySQL

A. TiDBのエコシステムツールを利用

B. Dual Write (ノーダウンタイム)

移行時のテクニック

柔軟なスケーリングを考慮したキャパシティプラン

移行直後

チューニング

移行後

オンライン スケールイン/ダウンで 最適なサイジングへ

CPU増・スロークエリ発生

- Indexが足りない
- クエリが非効率

Thank you!

Koitabashi Yoshitaka

 χ yoshii0110